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ABSTRACT 
 

This study introduces a combination of Remote Sensing (RS) and Artificial Intelligence (AI) 
techniques to create a system for mapping and monitoring hazard events on Brazilian 
Federal highways. The proposed method is subdivided into four steps: I – Creating a Hazard 
inventory, II – Mapping hazards, III – Prediction of new events, and IV – Creating a web 
application for data management. The inventory was made using publications gathered from 
the official Twitter accounts of the Brazilian Federal Highway Police (PRF) and the National 
Department of Transportation Infrastructure (DNIT), agencies responsible for supervising 
and coordinating the Brazilian road system. The collected data were analyzed by Natural 
Language Processing (NLP) techniques and classified into two categories, Relevant and 
Irrelevant. The first is for cases where the text gave information about natural disasters on 
highways, and the second one is where the publication referred to other subjects. Three 
different models were employed for NLP classification, Logistic Regression (LogR), Random 
Forest (RF), and Support Vector Machine (SVM). They all provided a reasonable metrics 
score of approximately 97% using the Term Frequency-Inverse Document Frequency (TF-
IDF) algorithm. In the following phases, both mapping and forecasting models were 
designed to emphasize geotechnical and flood disasters triggered by rainfall, the most 
common events in Brazil. To map flood extent and landslide, high-resolution satellite 
imagery acquired by the Sentinel Synthetic Aperture Radar (SAR), were used. The 
processing of these images allows the automatic calculation of the extent of flooding and 
landslide areas. In stage III, the forecast model was created by segmentation of the images 
collected in the preceding stage. The Deep Learning (DL) model U-NET was adopted for 
this purpose. The U-NET resulted in remarkable precision metrics ranges of 90%-96% for 
both cases. Moreover, hazard maps were obtained by a Multi-Criteria. Finally, the web app 
and database were built to report new events and store all the data from the previous 
phases.  

1. INTRODUCTION 

Brazil has the fourth most extensive road network in the world. Composed of 1,720,700.00 
km of extension among urban and rural roads, of which 75,553.00 km are federal highways, 
the object of this study [1,2]. Figure 1 illustrates the Brazilian federal highway network. The 
figure shows in detail the Federal Highways in the state of Espírito Santo chosen as the 
study region of this paper. All federal highways in Brazil are given the prefix “BR-” and three 
digits, where the first one depends on their direction. They are classified into five categories: 
Radial, Longitudinal, Transversal, Diagonal, and Connecting. Radial (BR-0XX), are the 
highways that depart from the Federal Capital in the direction of the country’s extremes. 
Longitudinal (BR-1XX), are those that cross the country in a north-south direction. 
Transversal (BR-2XX) are the ones in the east-west direction. On the other hand, Diagonal 
(BR-3XX) can have two modes of orientation: Northwest-Southeast or Northwest-
Southwest. And Connection highways (BR-4XX) are in either direction usually connecting 
at least one federal highway to international borders [1]. 
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Figure 1 – Brazilian Federal Highways network  

 
Brazilian transportation system is dependent mainly on road transportation, although it 
suffers from problems with infrastructure, safety, and longer travel times over long distances. 
In addition, factors such as the length of the network, the diverse hydro and geomorphologic 
conditions of the territory, and the insufficient investment in maintenance and repair have 
made them extremely vulnerable to weather events.  
 
In several countries, floods, landslides, and rock falls in urban areas have become 
increasingly frequent due to climate changes. These events impact lives, the environment, 
economics as well the transportation system. In Brazil the overview is not different, to give 
a clear example, in December 2021, an intense volume of rainfall (4.5 times the historical 
average) was recorded, which resulted in landslides, floods, falling trees, and roadway 
destruction on several stretches of the BR 101, 174, 158, 358, and 459 highways. The 
disasters affected at least 116 municipalities, compromising the mobility of freight and 
passengers and consequently the country’s economy. For the repair of the affected 
stretches, the Brazilian government has allocated about 39 million dollars through the MP 
1086/2021 law proposal [3]. For this reason, the development of a disaster management 
plan for highways has become a requirement in Brazil. A disaster management plan consists 
of a set of strategies divided into four phases (i.e. Preparedness, Response, Recovery, and 
Mitigation) that are designed to create local networks and structures to cut down on the 
potential risks of disaster. In particular, the stage of preparedness social media and hazard 
maps play a fundamental role to prevent major damage. Social networks such as Twitter, 
Facebook, and Instagram have been fully implemented by stakeholders, public authorities, 
and humanitarian organizations to provide information about natural disasters, and 
broadcast risk alerts. Moreover, they can be considered an attractive tool to engage citizens 
in preparedness activities. Regarding the studies of risk areas, evacuation site destinations, 
and escape routes, hazard maps are used. They are based on geographic information that 
includes the history of previous disasters, as well as topographical and geological features 
that contribute to the land formation and disaster susceptibility in the area [4,5].  
 
The combination of Remote Sensing and Artificial Intelligence has recently grown in the field 
of natural disaster management. In part, due to the improvement of geospatial technologies 
and the possibility to process high-resolution satellite imagery. But also because of the 
ascension of open data platforms such as Google Earth Engine (GEE) that allow access to 
geospatial Big data [6]. Cloud platforms facilitate the collection of high-resolution images 
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from pre-and post-natural disasters. The analysis of texture information within these images 
is essential for change detection [7]. Liu et al., supports that data-driven models, based on 
a Machine Learning (ML) approach have achieved good performances in landslide 
prediction. Such models have also been used to understand the relationship between the 
occurrence itself and its predictors [8]. In addition, Deep Learning (DL) techniques have 
been widely used in flood management, as in many cases they overcome the accuracy 
limitations of numerical models traditionally employed [9,10]. In recent years, several studies 
have been developing to identify the potential factors of risk and the possible damage 
caused by natural disasters. For the same purpose, this study was created to complement 
the existing references, highlighting the Brazilian case. 

2. MATERIALS AND METHODS  

In the HazRoad model, the inventory is developed by a combination of scraping data from 
information posted on Twitter and pre-processing natural language text. This allows for rapid 
database creation as well as near-real-time data input. Once past events have been known, 
the next step is to estimate affected areas by analyzing pre-and post-event images. Then, 
the hazard maps are designed. Subsequently, by employing deep learning techniques on 
these mapped regions, future events can be predicted. Finally, a rule-based approach is 
used to estimate the possibility of a hazard occurring throughout the region of interest. 
Specifically, the proposed framework consists of 14 successive steps. As illustrated in the 
following figure (Figure 2). 
 

 
Figure 2 – Flowchart of HazRoad Model 

 
The overall data acquisition and processing approaches, likewise the machine learning and 
remote sensing methods adopted to prepare this research will be described in the next 
sections. 

2.1. Inventory of Historical Events 

In Brazil, both disaster management and monitoring are coordinated by the National Civil 
Defense System of the municipalities in cooperation with the National Center for Monitoring 
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and Alerting Natural Disasters (CEMADEN) [11]. Nevertheless, there is not a specific sector 
that monitors natural disasters on highways or a survey of this data. Incidents such as 
inundations, landslides, or rock falls that occur on roads are usually published on the Twitter 
accounts of DNIT, and also of the Federal Highway Police of each state. Therefore, obtaining 
information on these events is technically challenging due to the lack of an official source. 
In fact, there are several possibilities to gather information from the Internet. Web Scraping 
is one of the most widely used to retrieve web data, for this reason, it was adopted in this 
study.  
 
Natural language Processing was used before machine learning classification to filter and 
extract valuable information from tweets. NLP is defined as a subfield of Artificial 
Intelligence. Its main objective is the implementation of mechanisms, theories, elements, 
and systems that enable human-machine interaction using its own natural language [12]. 
HazRoad NLP pipeline consists of three main parts: pre-processing text, classification, and 
feature extraction. The pre-processing text means to clean data by removing noise, such as 
punctuation marks, additional spaces, and unnecessary character encodings (e.g. 
emoticons or emojis) [13]. In the classification phase, to establish whether the tweet reports 
a hazard or not, three different ML classification methods were applied, Support Vector 
Machines, Logistic Regression, and Random Forest. Finally, for feature extraction was 
employed the Term Frequency-Inverse Document Frequency approach. The process of 
feature extraction essentially consists of capturing important phrases and words contained 
in a text. TF-IDF is a method of feature extraction by performing a clustering process based 
on calculating the frequency of each word in the dataset used. [14]. The last stage aims to 
create a database with key information such as location, road name, and type of hazard.  

2.2. Machine and Deep Learning Models 

Both Deep Learning and Machine Learning are fields of Artificial Intelligence. Machine 
learning is the branch of computer science that provides computers the capability to learn 
without being explicitly programmed [15]. The ML mathematical models make predictions in 
tagged data through statistics theories [16]. Hence, it is generally necessary for some pre-
processing to organize the data. On the other hand, Deep Learning excludes a significant 
amount of pre-processing steps required by machine learning. These algorithms can 
assimilate and process unstructured data, such as text and images, and they can also 
automate feature extraction, reducing reliance on human experts. DL is best suited for 
complex problems such as image recognition, speech recognition, and natural language 
processing [17]. AI models may be divided into three main classes: Supervised, 
Unsupervised and Reinforced Learning. The whole models used to develop this project are 
classified as supervised. This implies that labeled data sets were used to train the 
algorithms. For all models, the fitted data was split into training, test, and validation in a ratio 
of 70%, 20%, and 10%, respectively. The following is a brief description of the techniques 
employed in this study: 
 

● Logistic Regression: Logistic regression is a linear model, analogous to linear 
regression. It finds a linear relationship between the variable target (dependent) and 
the characteristics of the variables (independent). In terms of the linear function, the 
logistic regression model predicts the probability p(x) that the dependent variable 
belongs to the class of interest [18]. 
 

● Random Forest: RF is a supervised learning algorithm that is assumed to be 
versatile owing to its capacity to perform classification and regression tasks. When 
used, the algorithm produces a combination of decision trees to achieve a more 
precise prediction. This algorithm is used commonly because it is simple, 
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understandable, and presents good results in different types of machine learning 
analysis [19]. 
 

● Support Vector Machine: SVM Classifier is a supervised machine learning 
technique that employs hyperplanes to transform the nonlinear features into linear 
ones to classify features. A hyperplane is a decision plane that attempts to divide a 
set of objects and classify them [20]. 
 

● U-NET: U-Net network is a deep convolutional network that has widely been used in 
medical image segmentation [21]. Its major advantage is that it can be trained with a 
small amount of data. U-Net is a two-stage deep learning model. Its architecture 
includes an encoder model followed by a decoder model as depicted in figure 3.  
 

 
Figure 3 – U-Net Architecture 

  
The encoding path is analogous to a typical CNN structure and consists of sequential 
convolution blocks. Every convolutional block contains two layers with a 3 × 3 kernel size 
and a 2 x 2 max-pooling layer. Each convolutional layer is triggered by the rectified linear 
unit (ReLU) activation function. In order to do non-linear down-sampling, a 2 x 2 max-pooling 
layer is added to the end of the convolutional block in the encoder path. In contrast, a 2 x 2 
up-sampling layer is added to the decoder path. Following a 3x3 convolutional layer comes 
the up-sampling layer (see figure 2). This combination is what we refer to as learnable up 
convolution. At the final, a 1x1 layer constructs a binary mask. This model uses a set of input 
landslides and flooding images and their corresponding binary masks. During training and 
based on the binary mask as the target output, the model learns how to classify each pixel 
of the images into different object labels [21,22,23]. 
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2.3. Performance Metrics 

To evaluate the performance of all the models were used four metrics: Accuracy, F1 score, 

Precision, and Recall. Statistical metrics were computed based on true positive (TP), true 

negative (TN), false positive (FP), and false negative (FN) variables. All metrics and 

variables are briefly explained in table 1. 

 

Table 1 – Performance Metrics 

Metrics Formula Description 

FP False Positive Number of actual negative samples classified as positive 

FN False Negative Number of actual positive samples classified as negative 

TP True Positive Number of actual positive samples correctly classified. 

TN True Negative Number of actual negative samples correctly classified. 

Accuracy 
 

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

The ratio of samples that are correctly classified. This shows 

how well the model works. 

F1 score 

 

 
2 𝑥 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙
 

It is a measure to evaluate classification systems and is a way 

to combine the precision and recall results 

Precision  

 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

The ratio of positive samples that are correctly classified. This 

indicates the good predictability of the model. 

Recall 

 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

The ratio of true positive samples that are correctly classified. 

This indicates the good predictability of the model. 

 

2.4. Satellite Imagery Analysis 

For each case of hazard detection, pre-and post-event images were used. In both cases, 
the time series scenes were acquired from the Google Earth Engine platform. For floods, 
Sentinel – 1 GRD-IW products are used. The Sentinel-1 mission consists of two polar-
orbiting satellites (i.e. Sentinel-1A and Sentinel-1B) that work efficiently day and night, 
operating with a C-band synthetic aperture radar instrument that allows imagery acquisition 
regardless of weather or lighting conditions. It collects Synthetic Aperture Radar (SAR) data 
in single or dual polarization over 6 days. In order to simplify the handling of the images 
employed in this project, it was adopted the following pre-processing procedures [24]. The 
key aspects of pre-processing can be listed as follows:  
 

1. Apply Orbit File: This operation enables the automatic download and update of orbit 
state vectors in product metadata for each SAR picture, providing more accurate 
satellite location and velocity information. 
 

2. Thermal Noise Removal: Reduces noise effects in the inter-sub-swath texture, 
particularly by normalizing the backscatter signal across all Sentinel-1 imagery, 
decreasing the number of discontinuities among both sub-swaths for scenes acquired 
in multi-swath modes. 
 

3. Calibration: Calibration is the method by which digital pixel values are converted to 
radiometrically calibrated SAR backscatter. The Sentinel-1 GRD product includes the 
information needed to apply the calibration equation. 
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4. Speckle Noise removal: Speckle filtering is a technique for improving image quality 
by minimizing speckles. It appears as a result of the interference of waves reflected 
from a large number of elementary scatterers. 
 

5. Terrain Correction: The pixels are projected onto a map system and re-sampled to 
a spatial resolution of 10 m. Topographic corrections are also accomplished using a 
Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM). It 
corrects the distortions in the terrain’s areas. 
 

6. Conversion Linear into dB: A logarithmic transformation is used to convert the 
unitless backscatter coefficient to dB. 
 

Landslide identification differs from flood identification in terms of data acquisition and pre-
processing. First, Sentinel-2 scenes were utilized in landslide cases. Furthermore, the pre-
processing techniques used for Sentinel-2 products are less complex than the ones 
employed for flood detection (i.e. Sentinel – 1 scene). Its steps consist of filtering clouds and 
compositing all images selected. Both techniques are described below: 
 

1. Filter Clouds: This implies that the less cloudy Sentinel-2 granules are selected by 
filtering the collection of images obtained during the pre-and post-event timeline. The 
process is based on the proportion of cloud cover. The cloud threshold of 30% was 
used in this study [25]. 
 

2. Composite Images: Pixel-based image compositing is a technique used in remote 
sensing to overcome some of the limitations such as data availability, cloud coverage, 
image archive discontinuity, atmospheric interference, and radiometric 
inconsistencies caused by seasonal differences or changes in sun angles [26,27]. 
The HazRoad algorithm calculates the normalized difference vegetation index (NDVI) 
to determine the composition of landslide areas. Scheip et al., proposed this 
compositing method in 2021, which is distinguished by the use of Google Earth 
Engine (GEE) to generate and perform calculations on a greenest-pixel composite. 
The greenest pixel composite is defined as the highest NDVI value calculated for the 
entire compilation of images, it means pre- and post-event scenes [28]. 

2.5. Hazard Mapping 

According to a definition provided by The United Nations Office for Disaster Risk Reduction 
(UNDRR), a hazard is a process, phenomenon, or human activity that can result in death, 
injury, or other health consequences, property damage, economic and social interruption, 
or environmental degradation. This definition also subdivided hazard into three categories: 
Anthropogenic, Natural, and Socio-natural [29]. In this paper, the term ‘hazard’ will be used 
solely to refer to the natural category. Natural hazards are those associated mainly with 
natural processes and weather events. They include floods, volcanoes, earthquakes, 
tsunamis, and landslides.  
 
Specifically, for the HazRoad model, a slightly different proposal was adopted. Natural 
disasters were grouped into three classes: Geohazards, Structural Collapses and Floods. 
The Geo-hazard category covers landslides, erosion, and rock falls. Solheim et al. [30], 
define geohazards as incidents generated by geological, geomorphological, or climatic 
conditions or processes that pose serious threats to human life, property, and the natural 
and built environment. Regarding, Structural Collapse the category includes road and bridge 
collapses, and potholes in the road. And flooding refers to instances of flash flooding along 
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the highway. This classification system is useful because it helps distinguish common 
occurrences on highways.  
 
Overall, several conditioning factors can be considered for mapping hazards. For example, 
the Global Facility for Disaster Reduction and Recovery (GFDRR) [31] recommends that for 
mapping road disasters factors such as terrain, rainfall, road alignments, population data, 
land cover, and land use should be included. Antzoulatos et al. [32], support that the most 
relevant factors for flood mapping are elevation, slope, and aspect, all topographic 
parameters, which are extracted from digital elevation models (DEM) of the study area. The 
same conditioning factors were considered to design the HazRoad mapping models. For 
both, the elevation models were obtained using the Shuttle Radar Topography Mission 
(SRTM). The SRTM V3 (SRTM Plus) product provided by NASA JPL has 1 arc-second 
(approximately 30m) resolution [33,34].  

2.6. Study Area 

Due to the large extension of the Brazilian road network, and the availability of satellite 
images, it was chosen as the study area for the Remote Sensing and Deep Learning models 
(steps 2 and 3) only the regions with a higher frequency of floods and mass movements in 
the last three years. In particular, this work focuses on fourteen stretches of highway 
between the municipalities namely Serra, Cariacica, Viana, and Domingos Martins, all 
located in the state of Espírito Santo, as shown in Figure 4.  
 

 
Figure 4 – Study area 

 
Espírito Santo is located in the southeast region of Brazil. Covering an area of 46,095,583 
km², it is the fourth smallest Brazilian state. Nevertheless, its geographical location turns it 
into an important link between the country's regions. It borders the states of Bahia (to the 
north), Minas Gerais (to the west), Rio de Janeiro (to the south), and the Atlantic Ocean (to 
the east). Its road network comprises ten Federal highways (see Figure 1), among them BR-
101 and BR-262, which are the targets of this study. BR-101 is a longitudinal highway that 
crosses almost the entire Brazilian coast. BR-262 is a transverse highway that connects the 
coast to Minas Gerais and Mato Grosso do Sul. It serves as an important exit corridor for 
cattle, agriculture, and mining products.  
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The study domain is located in the central zone of Espírito Santo, which has a great variation 
in altitude. Regarding topography, the study area is characterized by the presence of low 
elevations in the municipality of Serra, where kilometers 294, 299, 300, and 302 of the BR-
101 highway are located, and steep slopes in the sections of the BR-262 between Cariacica 
and Domingos Martins. From the geomorphological point of view, this area is divided into 
two morpho-structural groups, the Sedimentary Deposits, near the Serra, and the 
Remobilized Fold Bands in the other three municipalities. The sedimentary deposits are 
defined by the occurrence of sandy and sandy-clay sediments with gravel levels, basically 
from the Barrier Formation group and coastal environments, deposited during the Cenozoic 
period. While the remobilized fold belts are distinguished by evidence of crustal movements, 
with fault marks, block displacements, and transverse faulting, imposing clear structural 
control over the present morphology [35]. Regarding the hydrological aspects, the study 
area is comprised of two hydrographic basins, Santa Maria da Vitória River Basin (Serra 
and Cariacica), and Jucu River Basin (Domingos Martins, Cariacica, and Viana). According 
to data from the National Water Agency (ANA), the respective basins present high 
vulnerability and frequency to flood events. It is worth noting that the studied stretches in the 
Serra region are located in a fluvial accumulation zone, and therefore are subject to periodic 
flooding [36].  

2.7. Mapping Areas Affected by Landslides and Floods 

This step aims at outlining areas affected by mass movements or floods. For this, Sentinel 
satellite images were collected at different time intervals, before and after each event. Both 
the acquisition and processing of these images were performed on the Google Earth Engine 
platform. The mapping phase is crucial for the development of the project because the 
creation of the forecast model database depends on the images generated by it. 
 
On November 14, 2019, an intense rainfall struck the mountainous region of the state of 
Espírito Santo, specifically between the municipalities of Viana and Domingos Martins. As 
a result, at least 6 points of landslides were registered on BR-262 that needed to be blocked. 
According to information from the transportation department, at least 77 points of landslides 
were reported on roads in this area between November 14 and 19 [37]. To map these 
events, 53 pre-and post-disaster satellite images from SAR-2 were collected. The definition 
of affected areas was achieved through a time series analysis of the Normalized Difference 
Vegetation Index (NDVI). In recent studies, the analysis of vegetation changes detected 
from abrupt NDVI declines in a short period has been employed for the rapid identification 
of landslides [38]. The methodology consists of calculating the difference between the NDVI 
from post-event of pre-event. The index is calculated by Equation 1. Then, it is defined as a 
data-driven threshold. In this study was applied the model proposed by Zhu and Woodcock 
[39] which measures the difference between observations and model predictions for each 
range/index, and the value found is normalized by three times the Root Mean Squared Error 
RMSE (Equation 2).  
 

𝑁𝐷𝑉𝐼 =  
𝑁𝐼𝑅−𝑅𝑒𝑑

𝑁𝐼𝑅+𝑅𝑒𝑑
=  

𝐵8 − 𝐵4

𝐵8 +𝐵4 
            (1) 

 

Where: 
NIR = light reflected in the near-infrared spectrum 
Red = light reflected in the red range of the spectrum 
B8 and B4 = Bands from Sentinel SAR-2, 10m resolution 
 

1 

𝑘
∑

|𝜌(𝑖,𝑥)−�̂�(𝑖,𝑥)𝑂𝐿𝑆|

3𝑥𝑅𝑀𝑆𝐸𝑖
> 1𝑘

𝑖=1       (2) 
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Where: 
x = Julian date 
i = the i-th satellite band 
𝜌(𝑖, 𝑥) = observed value for the i-th satellite Band at Julian date x 

�̂�(𝑖, 𝑥)= predicted value for the i-th satellite Band at Julian date x based on OLS fitting 

 
Finally, landslide areas are defined as those have NDVI values greater than the threshold 
and slope value over 10%. Figure 5 illustrates the NDVI images from the study area pre- 
and post-event (Landslide, November 14, 2019).  
 

a) Pre-landslide b) Post-landslide c) Landslide 

   
Figure 5 – NDVI values and Landslide areas  

 

NDVI index ranges from -1.0 to 1.0, representing the variation of photosynthetic activity of 
the analyzed area. Negative values are formed mainly by water or snow, and values close 
to zero usually indicate bare rocks and soil. Values smaller than 0.1 correspond to bare 
areas of rocks, sand, or snow. Moderate values (from 0.2 to 0.3) represent shrubs and 
grasslands, while high values (from 0.6 to 0.8) indicate a higher density of green vegetation. 
[40,41]. 
 
For flood detection, 32 Sentinel-1 images were used. The SAR collection is Ground Range 
Detected High Resolution (GRDH) products with a resolution of 10 × 10 m. All data were 
acquired from the GEE platform in Interferometric Wide Swath (IW) mode in VH polarization. 
The image acquisition period ranges from December 1, 2019, to January 31, 2020.  
 
The flooding event occurred on January 2 and 3, 2020, with a total rainfall accumulation of 
491.83 mm in 48h in the municipalities of Cariacica, Viana, and Serra [42]. In Viana, the 
heavy rain flooded four sections of BR-262, near the access to the Marcílio de Noronha 
neighborhood. Visual representation of the SAR images is shown in Figure 6. The image 
processing steps were described in Section 2.4. The initial threshold calculation is performed 
by the difference between the images converted into dB after and before the event (Equation 
3).  
 

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 =  𝑙𝑜𝑔 (𝑃𝑜𝑠𝑡𝑒𝑣𝑒𝑛𝑡 −   𝑃𝑟𝑒𝑒𝑣𝑒𝑛𝑡)           (3) 
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a) Pre-flood b) Post-flood c) Flood 

   
Figure 6 – Backscatter images pre-and post-event and Flooded areas 

 
 
In order to increase the probability of estimating a correct threshold, it was decided to split 
the study area into 50 polygons and calculate the threshold for each of them. The final 
average threshold is the arithmetic mean of the obtained values. However, before delimiting 
the flooded areas, it is necessary to define the permanent water bodies such as rivers, 
streams, and lakes (water seasonality 10 months of the year). Then, a mask is created to 
differentiate the permanent water pixels from the flood pixels. Flooded areas are those 
where the set of pixels does not belong to the water bodies, has a slope less than or equal 
to 5%, and the difference between pre-and post-image is greater than the average threshold. 

2.8. Hazard Assessment  

In this study, hazard assessment is performed using Analytic Hierarchy Process (AHP). AHP 
is a semi-quantitative method Multi-Criteria Analysis (MCA) approach developed by Saaty 
in 1980 [43]. Its methodology consists of, splitting a complex problem into simple criteria, 
where the decisions are taken considering the weight of each criterion calculated in a 
pairwise comparison matrix [44]. This matrix is drawn based on the element comparison 
scale. The scale ranges from 1 to 9 where 1 is equal to “Equally important values” (Two 
factors contribute equally to the objective) and 9 equals extremely important values. On the 
other hand, the even numbers 2,4,6, and 8 are intermediate values (intermediate preference 
between adjacent scales). Each pair within each criterion is assigned a score. This score 
indicates how well option "A" satisfies criterion "B". The scores are then normalized and 
averaged. Ten criteria are applied to "judge" the relative importance of one indicator 
compared to another. The pairwise comparison tables were filled in for nine risk factors (e.g. 
slope, TWI, etc.) in the area of natural disasters. Their results were normalized and 
examined with the Consistency Ratio (CR) test represented in the equation below [45]. CR 
depends on the Randomness Index (RI) that is shown in Table 2. 
 

𝐶𝑅 =  
𝐶𝐼

𝑅𝐼
=  

1

𝑅𝐼
(

 𝜆  − 𝑁

𝑁−1
)     (4) 

 
Where: 
CI = Consistency Index 
RI = Random Index 
𝜆  = Major Eigen value 
N = Criteria number 
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Table 2 – Random Index (RI) by Saaty (1980) [44] 

N 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

RI 0.0 0.0 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49 1.51 1.48  1.56 1.57 1.58 

 
In HazRoad model, complex problems are defined as flood and landslide events. In addition, 
the criteria are defined based on causative factors to hazards. Several researches have 
considered slope, slope aspect, soil, elevation, land cover and use, drainage, distance from 
roads, distance from rivers, Topographic Wetness Index (TWI), and precipitation of the 
region as main causative factors of landslides and floods [46].  

3. RESULTS AND DISCUSSION  

Table 3 shows the summary of the performance metrics for the Natural Language 
Processing model.  
 

Table 3 – Performance metrics for NLP models 

Supervised Classifier Accuracy Precision Recall F1-Score 

Logistic Regression 0.97 0.97 0.97 0.97 

Support Vector Machine 0.97 0.97 0.97 0.97 

Random Forest 0.97 0.96 0.97 0.96 

 
The performance metrics for the HazRoad NLP framework present significant outcomes, all 
close to 1.0. Interestingly, these values for the three classifiers used were relatively equal. 
To distinguish which model is the best among the possibilities, the feature importance metric 
was adopted. Feature importance refers to techniques that assign a score to input features 
based on their usefulness in predicting a target variable. Their scores play an important role 
in a predictive modeling project, including providing information about the data. The classifier 
that presented the best results was the Logistic Regression, which was effective in 
identifying the following keywords as the most frequent terms: flood, hillside, landslide, 
erosion, collapse, road sinking, bridge collapse, and pothole. 
 
Figure 7 provides the results obtained from the analysis of the tweets released by DNIT and 
the Federal Highway Police.  
 

 
Figure 7 – Hazards recorded from tweets from 2009 to 2022 
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The graph shows the evolution of the number of disasters in the period between 2009 and 
2022. From the chart, it is possible to observe a significant increase in events recorded from 
2018. A possible explanation for this may be the increased accumulation of rainfall in the 
southern, southeastern, and northeastern regions of Brazil. These regions concentrate 
93.88% of the cases of highway disasters. Another possible explanation for this is the spread 
of the social network Twitter as a means of communication for transportation regulatory 
agencies. 20,611 tweets were published between September 2009 and October 2022, of 
which 669 were disaster records. Hence, the inventory consists of 303 landslides, 15 rock 
falls, 76 erosion, 165 floods, 64 road collapses, 16 bridge collapses, and 30 pothole events. 
The three highways which had the highest number of incidences were BR-101, BR-262, and 
BR-381 with 111, 79, and 62 disaster events recorded, respectively. Among the states, the 
highest numbers were recorded in Minas Gerais, with 190 events, Espírito Santo, 114, and 
Paraná, with 103 incidents. Viana and Serra are highlighted among the flood cases, 
registering 11 and 8 cases respectively.  
 
The experimental results for HazRoad’s automatic landslide and flood detection are 
presented in Table 4. 
 

Table 4 – Performance metrics for DL models 

Hazard Batch Size Learning Rate Filters Precision Recall F1-Score 

Landslide 16 0.0005 4 0.963 0.957 0.960 

Flood 8 0.0001 4 0.900 0.923 0.911 

 
Overall, both models show a consistently high level of performance. The F1-score evaluation 
results for each case demonstrate the applicability of the HazRoad training dataset for 
disaster detection results. The F1-score for the test dataset on the models ranges from 91% 
to 96%, which is a good result. Moreover, the same was observed in Precision and Recall 
models, which range between 90.00%-93.30% and 92.30%-95.70%, respectively. In terms 
of computational architecture, the landslide detection model proved to need 16 training 
examples used for each iteration, while the model trained on flood data proved efficient with 
only 8 iterations. This implies that more computational effort was required to identify mass 
movements. The results of the hazard prediction by image segmentation are set out in the 
figure below. On the left are the black and white satellite images. The white polygons 
represent landslide and flood areas respectively. A closer inspection of Figure 8 shows that 
despite the high precision values, both models have certain limitations when identifying 
small areas. 

Landslide Flood 

  
Figure 8 – Hazards predictions 

 

The results of the hazard assessment analysis are set out in Figure 9. Additionally, the 
weighting of the individual causal hazard factors obtained by the AHP matrix is shown in 
Table 5.  
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It can be seen from the maps in the figure below that all sections of the highway in the study 
area have high vulnerability to hydro-geological disasters. One of the reasons is the 
geomorphology of the terrain, which presents high altitude, between the region between 
Viana and Domingos Martins (BR-262) and low altitude mainly in the region of the 
Municipality of Serra (km's 294,299,300 and 302 of BR-101), an area that tends to flood. 
 

  
Figure 9 – Hazards maps 

 

It is observed that the instability on slopes increases as the gradient increases, near the 
Serra, do Caparaó (mountain range west of Km 36 of BR-262). Whereas, areas where the 
slope angles are below 15º are less susceptible to landslides, in the case of the Serra 
Municipality. On the other hand, the probability of flooding events rises in the upstream 
direction of BR-101, in the stretches between Cariacica and Serra.  
 

Table 5 – Hazard Factor Weighting 

Hazard TWI Elev. Precip. Slope LULC NDVI Dist. 
river 

Dist. 
road 

Drainage 
Density 

Soil 
Type 

Landslide 0.202 0.132 0.069 0.230 0.040 0.051 0.047 0.093 0.068 0.068 

Flood 0.217 0.200 0.087 0.081 0.056 0.043 0.107 0.047 0.081 0.081 

 
Topography wetness index had the highest impact on the occurrence of floods and 
landslides. The results suggest a significant accumulation of water across the study area, 
primarily attributed to the presence of clay soil, which is prevalent in the region. In addition, 
the hydrological characteristics of the area also contribute to the prevalence of high and very 
high flood hazard zones. The sections of the highway closest to the Jacu and Vitória rivers 
experience the most severe impacts in this regard. Concerning the landslide, the areas near 
the Serra do Caparaó have the higher susceptibility. Because, the region's steep terrain 
significantly increases the potential for landslides. Furthermore, the geomorphological 
formation of this area renders it more vulnerable to such events. 

4. CONCLUSION 

This work contributes to existing knowledge about highway disasters by providing a 
comprehensive methodology for creating a management system. Web scraping and NLP 
techniques allow the collection and organization of data for the creation of an inventory. The 
remote sensing mapping step helps in the rapid delineation of affected areas. Through the 
use of deep learning image segmentation, new disaster spots can be automatically detected, 
as the algorithm recognizes impacted areas due to variations in the pixel pattern of the 
image. The hazard assessment identifies the most disaster-prone areas. Finally, all results 
are stored in a web portal. It is also interesting to note that the methods used to develop 
HazRoad can be applied to other roads in other parts of the world. 
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