

THE REPUBLIC OF THE UNION OF MYANMAR

PANEL DISCUSSION ON PAYEMANT

U HAN ZAW IMMEDIATE PAST PRESIDENT MYANMAR ENGINEERING SOCIETY

30th Japan Road Conference Toshi Center Hotel

October 30~31,2013

Expected technical supports from Japan

Conclusion

Myanmar Profile

Myanmar Profile

Major Issues on Pavement

(1) Geometric Design

(For Safety, Beauty, Comfort and Economy)

(2) Structural Design (For Stability of Road Structure)

(3) Maintenance

(4) Problems of Roads encountered in Delta Areas

Class	AADT	No. of lane	Pavement/ Lane Width
D-VI	< 50	Single Lane	12'
D-V	50~200	Single Lane	16'
D-IV	200~500	Two Lane	9'
D-III	500~2500	Two Lane	11' (minimum)
			12' (desirable)
D-II	> 2500	Four Lane	11' (minimum)
			12' (desirable)
D-I	> 2500	Four Lane	12'
		(Divided)	

(1) Geometric Design Standard Class DV and DVI (Public Works)

(2) Structural Design of Road

For Flexible Pavement Design, Public Works is using Road Note 31 and Oversea Road Note 31

➢Both come out from the research works made by Transport and Road Research Laboratory (U.K.).

➢ For Rigid Pavement Design, Road Note 29, Transport and Road Research Laboratory, U.K. is adopted.

(2) Structural Design of Road

Basic Principle

- To distribute traffic load to subgrade
- To make its stress smaller than the bearing capacity of the subgrade

KEY TO STRUCTURAL CATALOGUE

Traffic classes	Subgrade strength classes (CBR%)		
. (10°esa)			
T1 = < 0.3 T2 = 0.3 - 0.7 T3 = 0.7 - 1.5 T4 = 1.5 - 3.0 T5 = 3.0 - 6.0 T6 = 6.0 - 10 T7 = 10 - 17 T8 = 17 - 30	S1 = 2 S2 = 3, 4 S3 = 5 - 7 S4 = 8 - 14 S5 = 15 - 29 S6 = 30 + 30		
T8 = 17 - 30			

Material Definitions

Double surface dressing

Flexible bituminous surface

Bituminous surface (Usually a wearing course, WC, and a basecourse, BC)

Bituminous roadbase, RB

Granular roadbase, GB1 - GB3

Granular sub-base, GS

Granular capping layer or selected subgrade fill, GC

Cement or lime-stabilised roadbase 1, CB1

Cement or lime-stabilised roadbase 2, CB2

Cement or lime-stabilised sub-base, CS

Ē

CHART 1

GRANULAR ROADBASE / SURFACE DRESSING

Note: 1

* Up to 100mm of sub-base may be substituted with selected fill provided the sub-base is not reduced to less than the roadbase thickness or 200mm whichever is the greater. The substitution ratio of sub-base to selected fill is 25mm : 32mm.

2 A cement or lime-stabilised sub-base may also be used.

Fig: Concrete minimum thickness of slabs

Ę

Fig : Reinforcement: minimum weight for concrete slabs

(3) Maintenance

- Maintenance Manual for Bituminous Road (Public Works) is used.
- Manual for maintenance of concrete roads and management of maintenance system are needed to maintain economically and effectively within limited budget.

(3) Maintenance

- Maintenance Manual for Bituminous Road (Public Works) is used.
- Manual for maintenance of concrete roads and management of maintenance system are needed to maintain economically and effectively within limited budget.

Ē

CHART 1

GRANULAR ROADBASE / SURFACE DRESSING

Note: 1

* Up to 100mm of sub-base may be substituted with selected fill provided the sub-base is not reduced to less than the roadbase thickness or 200mm whichever is the greater. The substitution ratio of sub-base to selected fill is 25mm : 32mm.

2 A cement or lime-stabilised sub-base may also be used.

Fig: Concrete minimum thickness of slabs

Ę

Fig : Reinforcement: minimum weight for concrete slabs

(3) Maintenance

- Maintenance Manual for Bituminous Road (Public Works) is used.
- Manual for maintenance of concrete roads and management of maintenance system are needed to maintain economically and effectively within limited budget.

(4) Problems of Ayeyarwady Roads (Delta Area)

Soft Soil

- High Embankment (high flood level, high level of bridges)
- Shortage of Good Quality Crushed Rock

Drainage

Data of Ayeyarwady Region

Location - the southern part of the central plains of Myanmar

- 13,567 sq-mile (35,138 sq-km)
- Population over 6.5 million

Area

- Annual Rainfall approximately 100 in. (2,500 mm)
- Soil Type mostly Alluvial soil
- > A low-lying region and criss-crossed with rivers and lakes
- > A flood-prone and tidal area

Establishment and operation of technical standards

Factors considered in the Structural Design

- Design CBR of Subgrade
- Traffic Loading (cumulative number of standard axles during the design life)
- > Type and strength of pavement layer

Cumulative Nos. of Equivalence Standard Axles Load

During the design life

- Commercial Vehicle = Unladen weight of vehicle 1.5 tons and above
- Standard Axle = 18000 pounds.
- $\blacktriangleright \text{ Equivalence Factor } = \left\{ \frac{\text{axle load (lbs)}}{18000} \right\}^{4.5}$

= The damage that an be done equivalent to a standard axle

- Design life (n)
- Annual Growth Rate (r) (Growth rate = $1 \sim 2 \times GDP$)

In developed countries - 3 ~ 6 % In developing countries > developed countries

≻ $F = \{\frac{2+(n-1)r}{2}\}$

Cumulative Nos. of Equivalence Standard Axles Load During the design life = $n \times 365 \times F$ Total equivalence factor x AADT of each type of C.V of each type of C.V

Percentage (%) of commercial Vehicle on Design Lane

Pavement width	% of Commercial Vehicle (both directions)		
	on Design Lane		
12'	100 %		
14' ~ 18'	85 %		
20'	80 %		
22'	75 %		

Damaging Factor

 $DF = (\frac{a x le load x 2204}{18000 lb})^{4.5}$

۰.

Fig: Typical Flexible Pavement Cross Section

Fig: Typical Flexible Pavement Cross Section

Fig: Typical Rigid Pavement Cross Section (Plain Concrete Type)

Layout Plan of Rigid Pavement

Specifications

- There is manual for construction of roads and bridges.
- Specifications are written based on above manual and specifications specified in the design manuals.

Roads managed by Ministry of Construction

ROAD PROGRESS IN MYANMAR (March, 2012)

Years

Achievements in Road Sector

Nyaung Oo – Myingyan Road

Pathein – Monywa Highway

Pyimanar - Yamethin Road

Meiktila – Taunggyi Road

Yangon-Mandalay Expressway (586.2km)

Yangon-Mandalay Expressway (Rigid pavement) Project Data

S.N	Particular	Construction Period	Length (km)	Opened to Public
1	Yangon - Naypyitaw	10/2005 - 3/2009	323.4	25-3-2009
2	Naypyitaw - Sakainn	7/2008 - 12/2010	241	29-12-2010
3	Sakainn – Tadaoo - Tagonedine	1/2011 - 12/2011	21.8	23-12-2011
	Total Length		586.2	

Two Organizations constructed this expressway are-

1.Public Works

(under the Ministry of Construction)

2. Directorate of Military Engineers (under the Ministry of Defence)

Expected technical supports from Japan

- To Establish Myanmar Road & Bridge Association, based upon the present Road & Bridge Technical Division of Myanmar Engineering Society,
- To monitor and approve Myanmar Specifications for the Design, Construction, Operation & Maintenance of Roads & Bridges,
- To introduce pavement management system and maintenance management system so that management of roads can be made systematically within the limited budget.
- Technical Cooperation & Support of Japan Road Association for realization of the above three issues.

Conclusion

- Great Gratitude to this Japan Road Conference for sharing us chances to know about the development of road sector of Japan and other Asian countries;
- Hope for the future cooperation in learning, sharing, exchange and transferring of road pavement technology; and
- Difficulties and problems, encountered in our country to be solved in the near future.

Thank you for Kind Attention

