茨城県における舗装マネジメントに関する取組 茨城県舗装管理システム(RINCS)

管理延長: 4, 234km

指定区間外国道 771km 主要地方道 1,644km 一般県道 1,819km 1. 茨城県舗装管理システム(RINCS)の概要

RINCSの概要・目的

〇システム導入の目的

- ・道路を効率的・効果的に管理
- ・路面性状値、道路台帳データ、交通量データなど一元管理
- 道路の現状把握、計画的・予防的な維持管理

LCCを踏まえた工法選定

〇システムの機能

- ・舗装劣化状況及び沿道環境画像での現状把握
- ・工事(工法)選定・断面設計から維持修繕計画の構築

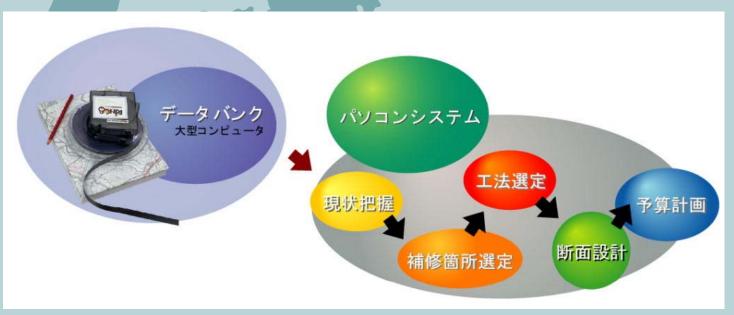
RINCSパソコンシステム概要

★現状把握

地図情報・写真情報を中心とした道路の現状把握 路面性状データ:ひびわれ、わだち掘れ、平坦性

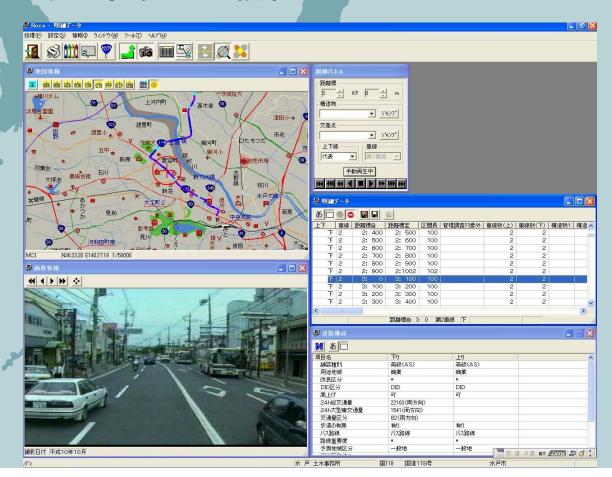
道路台帳データ:幅員、用途区分etc

交通量データ:交通センサス


補修データ:舗装構成、補修方法

★工事選定

工事選定・断面設計を中心とした、維持・修繕計画の支援


各土木事務所に設置したパソコンで、道路を管理 する上で必要となる情報収集、補修優先順位や最 適な工法の選定を検索できる体制を確立。

これにより経験と勘に依存していたものを、科学的・客観的に分析判断し計画的な補修を実現。

RINCSパソコンシステム概要(現状把握)

- ★必要なデータを、グラフィック機能を駆使したイメージ情報 として提供。
- ★全画面がリンク(連動)しているので、マクロ的な全体把握 とミクロ的な状況把握が可能。

モニタリング

- 〇定期的な路面性状調査の方法
 - •測定指標

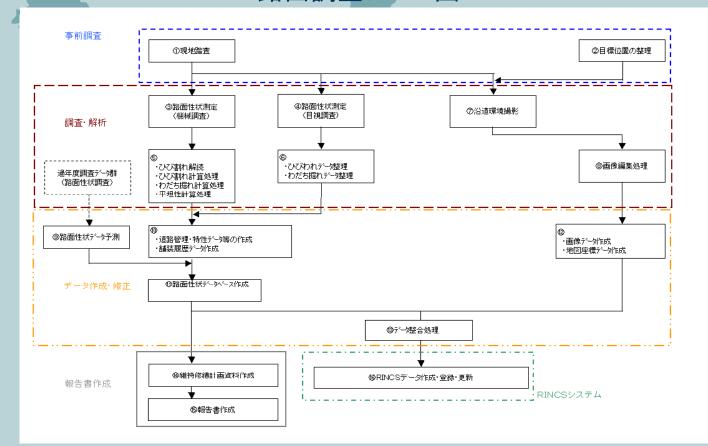
ひびわれ率、わだち掘れ量、平坦性の3要素

- 測定頻度

国道:1回/3年、主要地方道及び一般県道:1回/6年

-測定間隔

ひび割れ率:1mm以上、わだち掘れ:20m間隔、


平坦性:外側のわだち

- 〇対象車線
 - ・下りの1車線

茨城県における路面調査について

国道は3年毎(機械調査) 主要道、一般県道は6年毎(目視調査) に定期調査を実施。

路面調査フロ一図

レーザー自動測定車により路面性状を測定し、集めたデータは全てRINCSに蓄積。

沿道環境撮影で得られた画像データは、地図情報とリンクさせRINCSに反映。

3. 健全度の評価

〇舗装の管理指標

維持管理指数 MCI

データベース

〇データの種類

・路面性状データ、補修履歴、舗装構成、道路台帳、交通量等

現状把握表示機能

主として道路の現状把握を行うための機能。以下のウィンドウで構成。

- ●制御パネルウィンドウ:距離標の表示と位置の制御
- ●補修履歴ウィンドウ:選択されている距離位置の補修履歴を表示
- ●明細データウィンドウ:路面性状データ等を一覧表示
- ●道路構成ウィンドウ:道路台帳データ等を表示
- ●地図情報ウィンドウ: 簡略化された地図上に路線を表示
- ●画像情報ウィンドウ:沿道状況を表示
- ●車線イメージウィンドウ:車線イメージと路面性状のグラフ表示
- ●条件検索ウィンドウ:条件に該当するデータを検索
- ●集計結果表ウィンドウ:検索に該当したデータの数量を表示

明細データウィンドウ

路面性状データ、道路台帳データ、交通量データ、補修データを一覧表示。

學 Rocs - [明細データ]

明細データには、 距離標、車線数、構造物、 舗設年度、最新施工年度、 最新施工工法、経年数、 測定年度、路面種別、ひびわれ、 わだち、平坦性、MCI、PSI、 地域区分、交通量区分、 CBR値、嵩上げ可否、 歩道の有無、改良区分、 舗装種別、バス路線、交差点、 用途地域、台帳番号等が記載

明細データ画面

- FX

道路構成ウィンドウ

道路台帳データ、交通量データ等を上下線別に表示

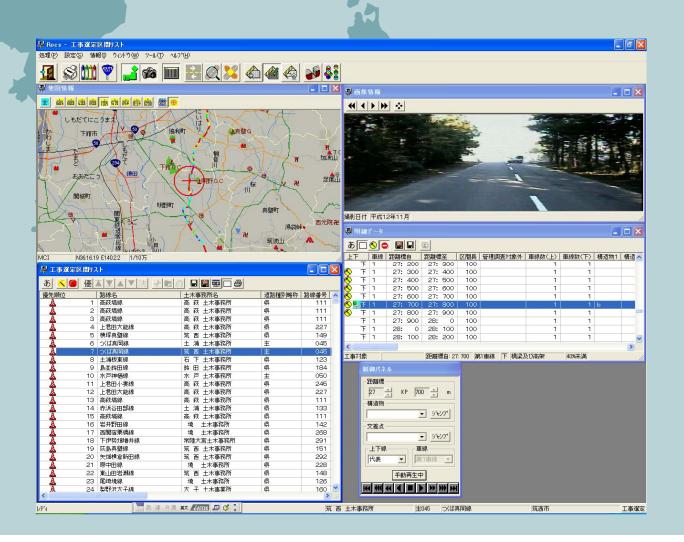
	下り	上り	
舗装種別	高級(AS)	高級(AS)	
用途地域			
改良区分	改良済み	改良済み	
DID区分	平地	平地	
嵩上げ	可	可	
24h総交通量	21092(両方向)		
24h大型車交通量	8877(両方向)		
交通量区分	D (両方向)		
歩道の有無	有り	有り	
バス路線	バス路線以外	バス路線以外	
路線重要度	*	*	
予測地域区分	一般地	一般地	
選挙区路線Ⅰ	1区	1区	
選挙区路線Ⅱ	下館市	下館市	
積雪寒冷地	一般地	一般地	
幅負	14.0m(全幅)		
道路台帳番号	294-129B	294-129B	

地図情報ウィンドウ

地図上で、特定路線や地点の情報検索が可能

路面性状の予測式

★県独自で作成(H9)した路面性状予測式を適用。 ★舗装補修を実施した箇所は初期値で更新。


アスファルト舗装 予測式および初期値

	·				
		条件	予測式	初期値	
		0≦Ci<5	$Ci + 1 = 1.318 \times Ci + 0.800 - 0.216 $ ($Ci + 1 = 1.318 \times Ci + 0.584$)		
		5≦Ci<15	Ci+1=1.145 × Ci+2.477 -1.358 (Ci+1=1.145 × Ci+1.119)		
		15≦Ci	$Ci+1=0.982 \times Ci+5.767 -1.562 (Ci+1=0.982 \times Ci+4.205)$		
	ひびわれ率	注)ひびわれ率=クラッ	クタ率(ひびわれ率=クラック率+パッチング率)	0%	
1		クラック率を上記式・	で所定の年数予測する。		
		予測されたクラック率	に測定時のパッチング率を加算しひびわれ率とする。		
		(パッチング率の予測	年数に対する増加はOとしている)		
		L, A, B交通量区分	Di+1=0.951 × Di+1.093		
		C交通量区分	$Di + 1 = 0.992 \times Di + 0.943$		
		D交通量区分	Di+1=0.984 × Di+1.245		
			(ただし、Di+1≦Diとなった場合は Di+1=Di+0.1とする)		
	わだち掘れ量	注)県ではB交通量区2	分を「B1交通」、「B2交通」と2つに分けているが、予測に関してはこれを	5. 2mm	
		区別しない。			
•		使用する交通量区分は、路面性状データー覧表に記載されている交通量区分を用いる。			
		「わだち掘れ平均」	、「わだち掘れ最大」とも上記の式で予測する。		
		交通量区分が不明	の場合は、「L, A、B交通量区分」の予測式を用いる。		
			$\sigma_{i+1} = 0.938 \times \sigma_{i+0.277}$		
	平坦性	-	(ただし、σi+1≦σiとなった場合は σi+1=σi+0.01とする)	1. 91mm	

RINCSパソコンシステム概要(工事選定)

工事選定機能では補修箇所や工法の選定、断面設計等、各種パラメータを自由に設定し最適な補修計画の立案が可能。

補修工法選定基準

下記の工法選定基準により補修工法をリストアップ。

/ >					
わた	<u>ち掘れ量20r</u>	mm未満の箇所	斤の工法選定:	基準	_
交通量 ひびランク	L	Α	В	C·D	
50以上	路上RC	打 換 または	打 換 または	打換	市街地
30%1	始上代し	または 路上RC	または 路上RC	打 按	その他
35~50	OL5cm	路上RC	吹 L D C	打 換 または	市街地
35.450	薄層舗装	OL5cm	路上RC	または 路上RC	その他
1525	薄層舗装	薄層舗装	OL5cm	OL 5 10	市街地
15~35	または アーマーコート	または アーマーコート	薄層舗装	5 ~ 10cm	その他
0~15		(日常の約	推持管理)		_

OL5cm:オーバーレイ5cmの下にリフレクションクラック防止層を施したもの

わだち掘れ量20mm以上の箇所の工法選定基準					
交通量ひびランク	L•A	В	C·D		
50以上	打 換 または	打 換	打換	市街地	
30%	あたは 路上RC	路上RC	11 15	その他	
35~50	路上RC	打 換 または	打換	市街地	
33.30	始上 代し	または 路上RC	打换	その他	
15~35	切削5cm	切削5~10cm	切削5~10cm	市街地	
	+	+	+		
0~15	OL5cm	OL5~10cm	OL5~10cm	その他	

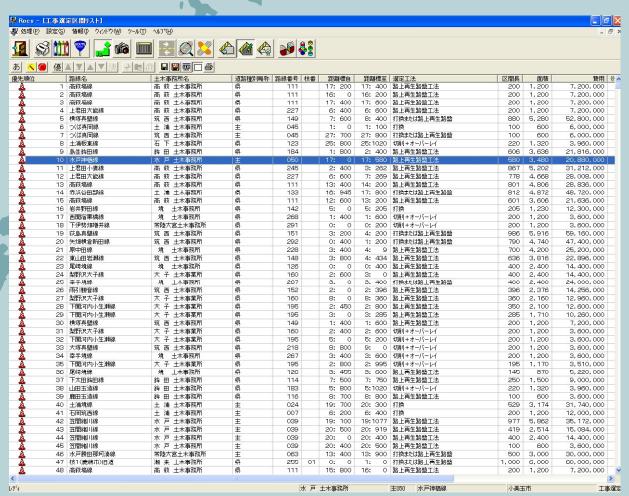
工事選定について

維持・修繕計画を支援するための機能。 以下のウィンドウで構成。

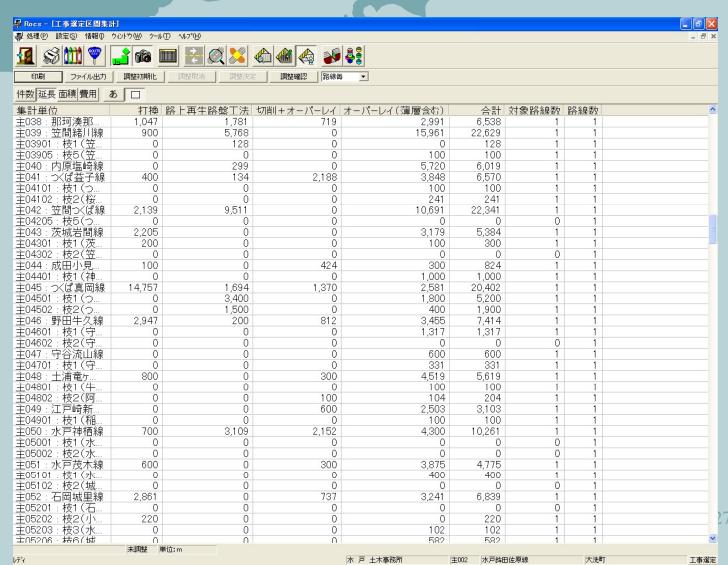
- ●工事区間選定条件ウィンドウ:条件を入力することで補修箇所を自動選定
- ●工事選定区間リストウィンドウ:選定された箇所を一覧表示
- ●工事選定区間集計ウィンドウ・選定された箇所の工法別集計値を表示
- ●断面設計ウィンドウ:工事断面の設計検討
- ●断面構成ウィンドウ:選択した地点の工事情報と断面のグラフィックを表示
- ●制御パネルウィンドウ
- ●明細データウィンドウ
- ●道路構成ウィンドウ
- ●地図情報ウィンドウ
- ●画像情報ウィンドウ
- ●車線イメージウィンドウ
- ●補修履歴ウィンドウ

現状把握と同一

工事区間選定条件ウィンドウ


補修が必要な条件を入力することにより補修箇所を自動選定。

工事選定区間リストウィンドウ


選定された工事箇所は以下の順番に並べ優先順位表示

- 1 MCI
- 2 わだち掘れ量
- 3 ひびわれ率
- 4 平坦性
- 5 道路種別
- 6 工事区間延長

工事選定区間集計ウィンドウノ

工事選定箇所の集計は路線毎、事務所毎、道路種毎に一覧することが可能。

断面設計ウィンドウ

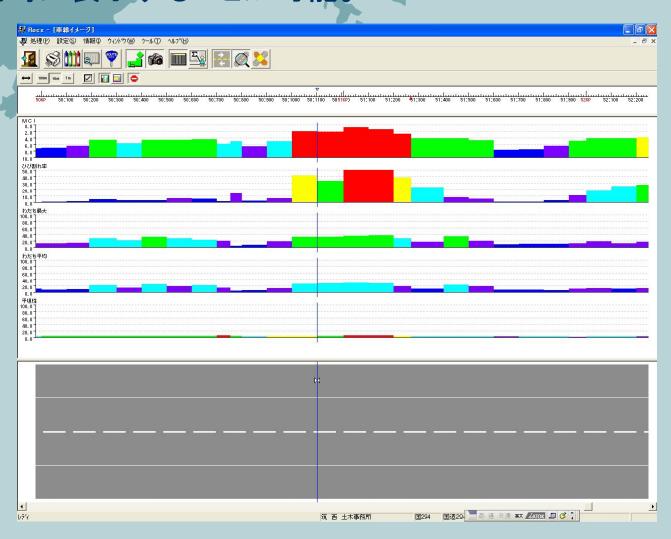
選定された区間の断面設計を行うことが可能。

地図情報ウィンドウ

地図上にMCIの色塗りを行うことが可能

地図情報ウィンドウ

MCI以外の各種パラメータによる地図の色塗りも可能。



画像情報ウィンドウ

その路線を実際に走っているような沿道状況を表示。連続再生させることも可能。

車線イメージウィンドウ 各路線毎に車線イメージとMCI、ひびわれ等のパラメータ を同時に表示することが可能。

集計結果表ウィンドウ

集計のため指定した条件に該当するデータを検索し、検索に該当した数量の確認を行うことが可能。

例: 茨城全県をMCI3以下で集計した結果

翠 集計結果表					Į.	
事務所数	12	7	12	(100.0	%)
路線数	299	/	533	(56.1	%)
レコード数	4120	1	34226	(12.0	%)
調査延長[m]	572070	/ 1	1109706	(13.9	%)